Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Cells ; 13(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38727324

RESUMEN

Norbormide (NRB) is a Rattus-selective toxicant, which was serendipitously discovered in 1964 and formerly marketed as an eco-friendly rodenticide that was deemed harmless to non-Rattus species. However, due to inconsistent efficacy and the emergence of second-generation anticoagulants, its usage declined, with registration lapsing in 2003. NRBs' lethal action in rats entails irreversible vasoconstriction of peripheral arteries, likely inducing cardiac damage: however, the precise chain of events leading to fatality and the target organs involved remain elusive. This unique contractile effect is exclusive to rat arteries and is induced solely by the endo isomers of NRB, hinting at a specific receptor involvement. Understanding NRB's mechanism of action is crucial for developing species-selective toxicants as alternatives to the broad-spectrum ones currently in use. Recent research efforts have focused on elucidating its cellular mechanisms and sites of action using novel NRB derivatives. The key findings are as follows: NRB selectively opens the rat mitochondrial permeability transition pore, which may be a factor that contributes to its lethal effect; it inhibits rat vascular KATP channels, which potentially controls its Rattus-selective vasoconstricting activity; and it possesses intracellular binding sites in both sensitive and insensitive cells, as revealed by fluorescent derivatives. These studies have led to the development of a prodrug with enhanced pharmacokinetic and toxicological profiles, which is currently undergoing registration as a novel efficacious eco-sustainable Rattus-selective toxicant. The NRB-fluorescent derivatives also show promise as non-toxic probes for intracellular organelle labelling. This review documents in more detail these developments and their implications.


Asunto(s)
Rodenticidas , Animales , Ratas , Rodenticidas/toxicidad , Humanos , Vasoconstricción/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731874

RESUMEN

The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales , Péptidos , Humanos , Células HeLa , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proteína Inhibidora ATPasa , Unión Proteica , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
3.
J Pharmacol Sci ; 155(2): 35-43, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677784

RESUMEN

Imeglimin is a novel oral antidiabetic drug for treating type 2 diabetes. However, the effect of imeglimin on NLRP3 inflammasome activation has not been investigated yet. Here, we aimed to investigate whether imeglimin reduces LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and examine the associated underlying mechanisms. We analyzed the mRNA and protein expression levels of NLRP3 inflammasome components and IL-1ß secretion. Additionally, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening were measured by flow cytometry. Imeglimin inhibited NLRP3 inflammasome-mediated IL-1ß production in LPS-stimulated THP-1-derived macrophages. In addition, imeglimin reduced LPS-induced mitochondrial ROS production and mitogen-activated protein kinase phosphorylation. Furthermore, imeglimin restored the mitochondrial function by modulating mitochondrial membrane depolarization and mPTP opening. We demonstrated for the first time that imeglimin reduces LPS-induced NLRP3 inflammasome activation by inhibiting mPTP opening in THP-1 macrophages. These results suggest that imeglimin could be a promising new anti-inflammatory agent for treating diabetic complications.


Asunto(s)
Inflamasomas , Interleucina-1beta , Lipopolisacáridos , Macrófagos , Potencial de la Membrana Mitocondrial , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antiinflamatorios/farmacología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Hipoglucemiantes/farmacología , Fosforilación/efectos de los fármacos , Células THP-1 , Proteínas Quinasas Activadas por Mitógenos/metabolismo
4.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38618716

RESUMEN

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Asunto(s)
Peroxidación de Lípido , Ratones Endogámicos C57BL , Mitocondrias Cardíacas , Mitocondrias Hepáticas , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica , Especies Reactivas de Oxígeno , Animales , Peroxidación de Lípido/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Mitocondrias Hepáticas/efectos de los fármacos , Calcio/metabolismo , Dilatación Mitocondrial/efectos de los fármacos
5.
Chem Biodivers ; 21(5): e202301916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511277

RESUMEN

BACKGROUND: Emodin has been shown to exert anti-inflammatory and cytoprotective effects. Our study aimed to identify a novel anti-inflammatory mechanism of emodin. METHODS: An LPS-induced model of microvascular endothelial cell (HMEC-1) injury was constructed. Cell proliferation was examined using a CCK-8 assay. The effects of emodin on reactive oxygen species (ROS), cell migration, the mitochondrial membrane potential (MMP), and the opening of the mitochondrial permeability transition pore (mPTP) were evaluated. Actin-Tracker Green was used to examine the relationship between cell microfilament reconstruction and ATP5A1 expression. The effects of emodin on the expression of ATP5A1, NALP3, and TNF-α were determined. After treatment with emodin, ATP5A1 and inflammatory factors (TNF-α, IL-1, IL-6, IL-13 and IL-18) were examined by Western blotting. RESULTS: Emodin significantly increased HMEC-1 cell proliferation and migration, inhibited the production of ROS, increased the mitochondrial membrane potential, and blocked the opening of the mPTP. Moreover, emodin could increase ATP5A1 expression, ameliorate cell microfilament remodeling, and decrease the expression of inflammatory factors. In addition, when ATP5A1 was overexpressed, the regulatory effect of emodin on inflammatory factors was not significant. CONCLUSION: Our findings suggest that emodin can protect HMEC-1 cells against inflammatory injury. This process is modulated by the expression of ATP5A1.


Asunto(s)
Proliferación Celular , Emodina , Lipopolisacáridos , Regulación hacia Arriba , Emodina/farmacología , Emodina/química , Lipopolisacáridos/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Línea Celular , Antiinflamatorios/farmacología , Antiinflamatorios/química
6.
Nanotoxicology ; 18(2): 122-133, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436290

RESUMEN

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are found in diverse products for human use. E171 is used as whitening agent in food and cosmetics, and ZnO NPs in food packaging. Their potential multi-organ toxicity has raised concerns on their safety. Since mitochondrial dysfunction is a key aspect of cardio-pathologies, here, we evaluate the effect of chronic exposure to E171 and ZnO NPs in rats on cardiac mitochondria. Changes in cardiac electrophysiology and body weight were measured. E171 reduced body weight more than 10% after 5 weeks. Both E171 and ZnO NPs increased systolic blood pressure (SBP) from 110-120 to 120-140 mmHg after 45 days of treatment. Both NPs altered the mitochondrial permeability transition pore (mPTP), reducing calcium requirement for permeability by 60% and 93% in E171- and ZnO NPs-exposed rats, respectively. Treatments also affected conformational state of adenine nucleotide translocase (ANT). E171 reduced the binding of EMA to Cys 159 in 30% and ZnO NPs in 57%. Mitochondrial aconitase activity was reduced by roughly 50% with both NPs, indicating oxidative stress. Transmission electron microscopy (TEM) revealed changes in mitochondrial morphology including sarcomere discontinuity, edema, and hypertrophy in rats exposed to both NPs. In conclusion, chronic oral exposure to NPs induces functional and morphological damage in cardiac mitochondria, with ZnO NPs being more toxic than E171, possibly due to their dissociation in free Zn2+ ion form. Therefore, chronic intake of these food additives could increase risk of cardiovascular disease.


Asunto(s)
Mitocondrias Cardíacas , Titanio , Óxido de Zinc , Animales , Titanio/toxicidad , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Masculino , Ratas , Administración Oral , Permeabilidad/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Ratas Sprague-Dawley , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos
7.
J Hazard Mater ; 465: 133090, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38039814

RESUMEN

Kashin-Beck disease is an endemic joint disease characterized by deep chondrocyte necrosis, and T-2 toxin exposure has been confirmed its etiology. This study investigated mechanism of T-2 toxin inducing mitochondrial dysfunction of chondrocytes through p53-cyclophilin D (CypD) pathway. The p53 signaling pathway was significantly enriched in T-2 toxin response genes from GeneCards. We demonstrated the upregulation of the p53 protein and p53-CypD complex in rat articular cartilage and ATDC5 cells induced by T-2 toxin. Transmission electron microscopy showed the damaged mitochondrial structure of ATDC5 cells induced by T-2 toxin. Furthermore, it can lead to overopening of the mitochondrial permeability transition pore (mPTP), decreased mitochondrial membrane potential, and increased reactive oxygen species generation in ATDC5 cells. Pifithrin-α, the p53 inhibitor, alleviated the increased p53-CypD complex and mitochondrial dysfunction of chondrocytes induced by T-2 toxin, suggesting that p53 played an important role in T-2 toxin-induced mitochondrial dysfunction. Mechanistically, T-2 toxin can activate the p53 protein, which can be transferred to the mitochondrial membrane and form a complex with CypD. The increased binding of p53 and CypD mediated the excessive opening of mPTP, changed mitochondrial membrane permeability, and ultimately induced mitochondrial dysfunction and apoptosis of chondrocytes.


Asunto(s)
Enfermedades Mitocondriales , Toxina T-2 , Ratas , Animales , Condrocitos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Ciclofilinas/metabolismo
8.
J Stud Alcohol Drugs ; 85(3): 361-370, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38147083

RESUMEN

OBJECTIVE: Prenatal alcohol exposure causes fetal developmental abnormalities via mitochondrial dysfunction, reactive oxygen species (ROS) formation, and oxidative stress. Therefore, we aimed to investigate the potential of hesperidin as a mitochondrial protective and antioxidative agent in newborn male rats as a model for fetal alcohol syndrome (FAS). METHOD: Newborn male rats were divided randomly into five groups: a sham group (receiving 27.8 ml/ kg milk solution, orally), an ethanol group (5.25 g/kg in milk solution, orally, 2-10 days after birth), an ethanol + hesperidin group (25 mg/kg/ day orally), an ethanol + hesperidin group (50 mg/kg/day orally), and an ethanol + hesperidin group (100 mg/kg/day orally). Thirty-six days after birth, newborn male rats were sacrificed and brain mitochondria were isolated using differential centrifugation. Mitochondrial toxicity biomarkers of succinate dehydrogenase (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP), and ROS were measured. RESULTS: Offspring neonatally exposed to ethanol showed a significant reduction in SDH activity, mitochondrial swelling, MMP collapse, induction of ROS formation, and lipid peroxidation in isolated mitochondria. Oral administration of hesperidin restored SDH activity, improved MMP collapse and mitochondrial swelling, and reduced ROS formation. CONCLUSIONS: This study demonstrates that hesperidin exerts a potent protective effect against alcohol-induced mitochondrial toxicity in the FAS model. Moreover, these findings indicate that hesperidin might be a useful compound for prevention of alcohol-induced fetal developmental abnormalities during pregnancy.


Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Etanol , Trastornos del Espectro Alcohólico Fetal , Hesperidina , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Estrés Oxidativo/efectos de los fármacos , Masculino , Trastornos del Espectro Alcohólico Fetal/prevención & control , Trastornos del Espectro Alcohólico Fetal/metabolismo , Ratas , Etanol/administración & dosificación , Etanol/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Femenino , Hesperidina/farmacología , Hesperidina/administración & dosificación , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Embarazo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Succinato Deshidrogenasa/metabolismo , Ratas Wistar
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166898, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774936

RESUMEN

Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown. To investigate the mechanism behind mitochondrial dysfunction caused by this tau form, we used transient transfection and pharmacological approaches in immortalized cortical neurons and mouse primary hippocampal neurons. We assessed mitochondrial morphology and bioenergetics function after expression of full-length tau and caspase-3-cleaved tau. We also evaluated the mitochondrial permeability transition pore (mPTP) opening and its conformation as a possible mechanism to explain mitochondrial impairment induced by caspase-3 cleaved tau. Our studies showed that pharmacological inhibition of mPTP by cyclosporine A (CsA) prevented all mitochondrial length and bioenergetics abnormalities in neuronal cells expressing caspase-3 cleaved tau. Neuronal cells expressing caspase-3-cleaved tau showed sustained mPTP opening which is mostly dependent on cyclophilin D (CypD) protein expression. Moreover, the impairment of mitochondrial length and bioenergetics induced by caspase-3-cleaved tau were prevented in hippocampal neurons obtained from CypD knock-out mice. Interestingly, previous studies using these mice showed a prevention of mPTP opening and a reduction of mitochondrial failure and neurodegeneration induced by AD. Therefore, our findings showed that caspase-3-cleaved tau negatively impacts mitochondrial bioenergetics through mPTP activation, highlighting the importance of this channel and its regulatory protein, CypD, in the neuronal damage induced by tau pathology in AD.


Asunto(s)
Enfermedad de Alzheimer , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(51): e2303713120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38091291

RESUMEN

The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca2+ concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms. Here, we present mitochondrial, cellular, and in vivo evidence that, rather than serving as mPTP, the mitochondrial ATP synthase inhibits this pore. Our studies confirm previous work showing persistence of mPTP in HAP1 cell lines lacking an assembled mitochondrial ATP synthase. Unexpectedly, however, we observe that Ca2+-induced pore opening is markedly sensitized by loss of the mitochondrial ATP synthase. Further, mPTP opening in cells lacking the mitochondrial ATP synthase is desensitized by pharmacological inhibition and genetic depletion of the mitochondrial cis-trans prolyl isomerase cyclophilin D as in wild-type cells, indicating that cyclophilin D can modulate mPTP through substrates other than subunits in the assembled mitochondrial ATP synthase. Mitoplast patch clamping studies showed that mPTP channel conductance was unaffected by loss of the mitochondrial ATP synthase but still blocked by cyclophilin D inhibition. Cardiac mitochondria from mice whose heart muscle cells we engineered deficient in the mitochondrial ATP synthase also demonstrate sensitization of Ca2+-induced mPTP opening and desensitization by cyclophilin D inhibition. Further, these mice exhibit strikingly larger myocardial infarctions when challenged with ischemia/reperfusion in vivo. We conclude that the mitochondrial ATP synthase does not function as mPTP and instead negatively regulates this pore.


Asunto(s)
Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales , Ratones , Animales , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Peptidil-Prolil Isomerasa F , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Calcio/metabolismo
11.
J Biol Chem ; 299(12): 105458, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949231

RESUMEN

Age-related bone loss is associated with decreased bone formation, increased bone resorption, and accumulation of bone marrow fat. During aging, differentiation potential of bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) is shifted toward an adipogenic lineage and away from an osteogenic lineage. In aged bone tissue, we previously observed pathological opening of the mitochondrial permeability transition pore (MPTP) which leads to mitochondrial dysfunction, oxidative phosphorylation uncoupling, and cell death. Cyclophilin D (CypD) is a mitochondrial protein that facilitates opening of the MPTP. We found earlier that CypD is downregulated during osteogenesis of BMSCs leading to lower MPTP activity and, thus, protecting mitochondria from dysfunction. However, during adipogenesis, a fate alternative to osteogenesis, the regulation of mitochondrial function and CypD expression is still unclear. In this study, we observed that BMSCs have increased CypD expression and MPTP activity, activated glycolysis, and fragmented mitochondrial network during adipogenesis. Adipogenic C/EBPα acts as a transcriptional activator of expression of the CypD gene, Ppif, during this process. Inflammation-associated transcription factor NF-κB shows a synergistic effect with C/EBPα inducing Ppif expression. Overall, we demonstrated changes in mitochondrial morphology and function during adipogenesis. We also identified C/EBPα as a transcriptional activator of CypD. The synergistic activation of CypD by C/EBPα and the NF-κB p65 subunit during this process suggests a potential link between adipogenic signaling, inflammation, and MPTP gain-of-function, thus altering BMSC fate during aging.


Asunto(s)
Adipogénesis , Proteína alfa Potenciadora de Unión a CCAAT , Poro de Transición de la Permeabilidad Mitocondrial , Envejecimiento , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Glucólisis , Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Peptidil-Prolil Isomerasa F/genética , Peptidil-Prolil Isomerasa F/metabolismo , Factor de Transcripción ReIA
12.
Biochem Soc Trans ; 51(6): 2153-2161, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37955101

RESUMEN

Inorganic polyphosphate (polyP) is an ancient polymer that is well-conserved throughout evolution. It is formed by multiple subunits of orthophosphates linked together by phosphoanhydride bonds. The presence of these bonds, which are structurally similar to those found in ATP, and the high abundance of polyP in mammalian mitochondria, suggest that polyP could be involved in the regulation of the physiology of the organelle, especially in the energy metabolism. In fact, the scientific literature shows an unequivocal role for polyP not only in directly regulating oxidative a phosphorylation; but also in the regulation of reactive oxygen species metabolism, mitochondrial free calcium homeostasis, and the formation and opening of mitochondrial permeability transitions pore. All these processes are closely interconnected with the status of mitochondrial bioenergetics and therefore play a crucial role in maintaining mitochondrial and cell physiology. In this invited review, we discuss the main scientific literature regarding the regulatory role of polyP in mammalian mitochondrial physiology, placing a particular emphasis on its impact on energy metabolism. Although the effects of polyP on the physiology of the organelle are evident; numerous aspects, particularly within mammalian cells, remain unclear and require further investigation. These aspects encompass, for example, advancing the development of more precise analytical methods, unraveling the mechanism responsible for sensing polyP levels, and understanding the exact molecular mechanism that underlies the effects of polyP on mitochondrial physiology. By increasing our understanding of the biology of this ancient and understudied polymer, we could unravel new pharmacological targets in diseases where mitochondrial dysfunction, including energy metabolism dysregulation, has been broadly described.


Asunto(s)
Mitocondrias , Polifosfatos , Animales , Metabolismo Energético , Mamíferos/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Polímeros , Polifosfatos/metabolismo
13.
Neurochem Int ; 171: 105631, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852579

RESUMEN

Aminoacylase 1 (ACY1) deficiency is a rare genetic disorder that affects the breakdown of short-chain aliphatic N-acetylated amino acids, leading to the accumulation of these amino acid derivatives in the urine of patients. Some of the affected individuals have presented with heterogeneous neurological symptoms such as psychomotor delay, seizures, and intellectual disability. Considering that the pathological mechanisms of brain damage in this disorder remain mostly unknown, here we investigated whether major metabolites accumulating in ACY1 deficiency, namely N-acetylglutamate (NAG) and N-acetylmethionine (NAM), could be toxic to the brain by examining their in vitro effects on important mitochondrial properties. We assessed the effects of NAG and NAM on membrane potential, swelling, reducing equivalents, and Ca2+ retention capacity in purified mitochondrial preparations obtained from the brain of adolescent rats. NAG and NAM decreased mitochondrial membrane potential, reducing equivalents, and calcium retention capacity, and induced swelling in Ca2+-loaded brain mitochondria supported by glutamate plus malate. Notably, these changes were completely prevented by the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP and by ruthenium red, implying the participation of MPT and Ca2+ in these effects. Our findings suggest that NAG- and NAM-induced disruption of mitochondrial functions involving MPT may represent relevant mechanisms of neuropathology in ACY1 deficiency.


Asunto(s)
Encéfalo , Metabolismo Energético , Mitocondrias , Animales , Ratas , Encéfalo/metabolismo , Calcio/metabolismo , Ácidos Grasos/metabolismo , Glutamatos/farmacología , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/farmacología , Envejecimiento
14.
Cells ; 12(15)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37566029

RESUMEN

The mitochondrial permeability transition pore (mPTP) is a large, weakly selective pore that opens in the mitochondrial inner membrane in response to the pathological increase in matrix Ca2+ concentration. mPTP activation has been implicated as a key factor contributing to stress-induced necrotic and apoptotic cell death. The molecular identity of the mPTP is not completely understood. Both ATP synthase and adenine nucleotide translocase (ANT) have been described as important components of the mPTP. Using a refractive index (RI) imaging approach, we recently demonstrated that the removal of either ATP synthase or ANT eliminates the Ca2+-induced mPTP in experiments with intact cells. These results suggest that mPTP formation relies on the interaction between ATP synthase and ANT protein complexes. To gain further insight into this process, we used RI imaging to investigate mPTP properties in cells with a genetically eliminated C subunit of ATP synthase. These cells also lack ATP6, ATP8, 6.8PL subunits and DAPIT but, importantly, have a vestigial ATP synthase complex with assembled F1 and peripheral stalk domains. We found that these cells can still undergo mPTP activation, which can be blocked by the ANT inhibitor bongkrekic acid. These results suggest that ANT can form the pore independently from the C subunit but still requires the presence of other components of ATP synthase.


Asunto(s)
Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Refractometría , Translocasas Mitocondriales de ADP y ATP/metabolismo , Adenosina Trifosfato/metabolismo
15.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408243

RESUMEN

The demonstration that F1FO (F)-ATP synthase and adenine nucleotide translocase (ANT) can form Ca2+-activated, high-conductance channels in the inner membrane of mitochondria from a variety of eukaryotes led to renewed interest in the permeability transition (PT), a permeability increase mediated by the PT pore (PTP). The PT is a Ca2+-dependent permeability increase in the inner mitochondrial membrane whose function and underlying molecular mechanisms have challenged scientists for the last 70 years. Although most of our knowledge about the PTP comes from studies in mammals, recent data obtained in other species highlighted substantial differences that could be perhaps attributed to specific features of F-ATP synthase and/or ANT. Strikingly, the anoxia and salt-tolerant brine shrimp Artemia franciscana does not undergo a PT in spite of its ability to take up and store Ca2+ in mitochondria, and the anoxia-resistant Drosophila melanogaster displays a low-conductance, selective Ca2+-induced Ca2+ release channel rather than a PTP. In mammals, the PT provides a mechanism for the release of cytochrome c and other proapoptotic proteins and mediates various forms of cell death. In this review, we cover the features of the PT (or lack thereof) in mammals, yeast, Drosophila melanogaster, Artemia franciscana and Caenorhabditis elegans, and we discuss the presence of the intrinsic pathway of apoptosis and of other forms of cell death. We hope that this exercise may help elucidate the function(s) of the PT and its possible role in evolution and inspire further tests to define its molecular nature.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Mamíferos/metabolismo
16.
Adv Sci (Weinh) ; 10(25): e2207691, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409821

RESUMEN

Mitochondrial function impairment due to abnormal opening of the mitochondrial permeability transition pore (MPTP) is considered the central event in acute pancreatitis; however, therapeutic choices for this condition remain controversial. Mesenchymal stem cells (MSCs) are a family member of stem cells with immunomodulatory and anti-inflammatory capabilities that can mitigate damage in experimental pancreatitis. Here, it is shown that MSCs deliver hypoxia-treated functional mitochondria to damaged pancreatic acinar cells (PACs) via extracellular vesicles (EVs), which reverse the metabolic function of PACs, maintain ATP supply, and exhibit an excellent injury-inhibiting effect. Mechanistically, hypoxia inhibits superoxide accumulation in the mitochondria of MSCs and upregulates the membrane potential, which is internalized into PACs via EVs, thus, remodeling the metabolic state. In addition, cargocytes constructed via stem cell denucleation as mitochondrial vectors are shown to exert similar therapeutic effects to MSCs. These findings reveal an important mechanism underlying the role of mitochondria in MSC therapy and offer the possibility of applying mitochondrial therapy to patients with severe acute pancreatitis.


Asunto(s)
Células Acinares , Células Madre Mesenquimatosas , Mitocondrias , Páncreas , Pancreatitis , Células Acinares/citología , Células Acinares/metabolismo , Enfermedad Aguda , Adenosina Trifosfato/metabolismo , Ácidos y Sales Biliares/metabolismo , Hipoxia de la Célula , Reprogramación Celular , Vesículas Extracelulares/metabolismo , Potencial de la Membrana Mitocondrial , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Páncreas/citología , Páncreas/metabolismo , Páncreas/patología , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/terapia , Comunicación Paracrina , Superóxidos/metabolismo , Cordón Umbilical/citología , Humanos
17.
Cell Rep ; 42(7): 112735, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421627

RESUMEN

Mitochondrial Ca2+ overload is proposed to regulate cell death via opening of the mitochondrial permeability transition pore. It is hypothesized that inhibition of the mitochondrial Ca2+ uniporter (MCU) will prevent Ca2+ accumulation during ischemia/reperfusion and thereby reduce cell death. To address this, we evaluate mitochondrial Ca2+ in ex-vivo-perfused hearts from germline MCU-knockout (KO) and wild-type (WT) mice using transmural spectroscopy. Matrix Ca2+ levels are measured with a genetically encoded, red fluorescent Ca2+ indicator (R-GECO1) using an adeno-associated viral vector (AAV9) for delivery. Due to the pH sensitivity of R-GECO1 and the known fall in pH during ischemia, hearts are glycogen depleted to decrease the ischemic fall in pH. At 20 min of ischemia, there is significantly less mitochondrial Ca2+ in MCU-KO hearts compared with MCU-WT controls. However, an increase in mitochondrial Ca2+ is present in MCU-KO hearts, suggesting that mitochondrial Ca2+ overload during ischemia is not solely dependent on MCU.


Asunto(s)
Isquemia , Mitocondrias , Ratones , Animales , Mitocondrias/metabolismo , Isquemia/metabolismo , Corazón , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Calcio/metabolismo
18.
Cell Death Differ ; 30(8): 1869-1885, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460667

RESUMEN

The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial/análisis , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Consenso , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
19.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298189

RESUMEN

The opening of the permeability transition pore (PTP) in mitochondria is a key event in the initiation of cell death in various pathologic states, including ischemia/reperfusion. The activation of K+ transport into mitochondria protects cells from ischemia/reperfusion. However, the role of K+ transport in PTP regulation is unclear. Here, we studied the role of K+ and other monovalent cations in the regulation of the PTP opening in an in vitro model. The registration of the PTP opening, membrane potential, Ca2+-retention capacity, matrix pH, and K+ transport was performed using standard spectral and electrode techniques. We found that the presence of all cations tested in the medium (K+, Na+, choline+, and Li+) strongly stimulated the PTP opening compared with sucrose. Several possible reasons for this were examined: the effect of ionic strength, the influx of cations through selective and non-selective channels and exchangers, the suppression of Ca2+/H+ exchange, and the influx of anions. The data obtained indicate that the mechanism of PTP stimulation by cations includes the suppression of K+/H+ exchange and acidification of the matrix, which facilitates the influx of phosphate. Thus, the K+/H+ exchanger and the phosphate carrier together with selective K+ channels compose a PTP regulatory triad, which might operate in vivo.


Asunto(s)
Mitocondrias Hepáticas , Poro de Transición de la Permeabilidad Mitocondrial , Humanos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Cationes Monovalentes/metabolismo , Isquemia/metabolismo , Calcio/metabolismo , Permeabilidad
20.
Arch Insect Biochem Physiol ; 114(1): e22029, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37278151

RESUMEN

Inorganic polyphosphate (polyP) is a biopolymer composed of phosphoanhydride-linked orthophosphate molecules. PolyP is engaged in a variety of cellular functions, including mitochondrial metabolism. Here, we examined the effects of polyP on electron transport chain enzymes and F1 Fo ATP synthase in tick embryos during embryonic development. The study found that polyPs containing medium and long chains (polyP15 and polyP65 ) enhanced the activity of complex I, complex II, complex III, and F1 Fo ATP synthase, while short polyP chains (polyP3 ) had no effect. The study also examined the activity of exopolyphosphatases (PPX) in various energy-demand situations. PPX activity was stimulated when ADP concentrations are high, characterizing a low-energy context. When complexes I-III and F1 Fo ATP synthase inhibitors were added in energized mitochondria, PPX activity decreased, whereas the mitochondrial uncoupler FCCP had no impact on PPX activity. Additionally, the study investigated the effect of polyP on mitochondrial swelling, finding that polyP causes mitochondrial swelling by increasing calcium effects on the mitochondrial permeability transition pore. The findings presented here to increase our understanding of the function of polyP in mitochondrial metabolism and its relationship to mitochondrial permeability transition pore opening in an arthropod model.


Asunto(s)
Poro de Transición de la Permeabilidad Mitocondrial , Garrapatas , Animales , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/farmacología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/farmacología , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Polifosfatos/farmacología , Polifosfatos/metabolismo , Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...